
TheuseofZFP lossy compression in tornado-resolving thunderstormsimulations
Leigh Orf, Cooperative Institute for Meteorological Satellite Studies, UW-Madison

AGU Fall Meeting, New Orleans, 11 Dec 2017. Invited poster IN11B-0039

Overview
Numerical models run on supercomputers can create
tremendous amounts of data. In our work, we are sim-
ulating tornado-producing supercell thunderstorms at
ultra-high resolution on the Blue Waters supercom-
puter. In a typical simulation, we save data every 1
model second for 90 minutes of cloud time in order to
capture rapidly varying winds in the vicinity of the
tornado. This results in thousands of saved times,
with each saved time containing a dozen or more 3D
floating point model variables. A single simulation
can result in several petabytes of floating point
output if data is written uncompressed across
the full model domain.
The main motivation for this work is to save 3D float-
ing point data at extremely high temporal resolution
such that I/O does not dominate model run time. We
achieve this by:

1. Creating a file system (LOFS) for massively
parallel MPI simulations in which files are
spread across many directories, each file con-
taining a continuous portion of model domain

2. Buffering data to memory during most writes
in order to reduce latency associated with doing
I/O to Lustre frequently

3. Only saving data in a subset of the full model
domain (e.g., centered on the storm’s updraft
where the tornado forms)

4. Compressing all 3D floating point arrays with
ZFP lossy floating point compression

LOFS
LOFS is a file system containing HDF5 files spread
across many directories. LOFS has been ported to
the CM1 cloud model but could be applied to any
3D fluid code that utilizes MPI with a 2D domain
decomposition on a shared file system such as Lustre.

LOFS features:

1. Files are written on a per-node basis, with only
intranode communication required to assemble
a 3D chunk of model domain

2. Each HDF5 file can contain as many times as
can be buffered to memory without memory ex-
haustion

3. Files and directories all require a strict naming
convention such that metadata can be extracted
by the name of the directory/file

4. Redundant metadata stored within each HDF5
contains enough information to reconstruct the
full filesystem structure

5. Only serial HDF5 is used for LOFS; this allows
us to use compression on a per-file basis

6. An API for reading data which takes as input
i,j,k range (with respect to the full model do-
main) requested of any model variable

ZFP lossy compression
ZFP is an open source C/C++ library for compressed
floating-point arrays that support very high through-
put read and write random access. A zfp filter has
been written for the HDF5 data format and has been
adopted in this work. In this work, all compres-
sion is done utilizing “accuracy mode” where
the amount of accuracy is specified per vari-
able. This is very intuitive, allowing compression ra-
tios to vary from file to file but retaining the specified
accuracy in all files.

LOFS directory structure
In the below tree listing, each directory contains up
to 1000 HDF files, with each HDF5 file containing 50
times per file and a dozen 3D variables per time. Files
are concurrently written across several directories at
each write cycle.

history (top level directory)
2D (horiz. slices saved with pHDF5)
3D (3D floating point data)

tornado.03000 (50 s of data in 1 s chunks)
tornado.03050 (50 s of data in 1 s chunks)
...
tornado.07150 (50 s of data in 1 s chunks)
tornado.07200 (50 s of data in 1 s chunks)

0000000 (contains up to 1000 files)
0001000 (contains up to 1000 files)
...
0008000 (contains up to 1000 files)
0009000 (contains up to 1000 files)

tornado.07200.0009000.cm1hdf5
tornado.07200.0009001.cm1hdf5
tornado.07200.0009002.cm1hdf5
tornado.07200.0009003.cm1hdf5
tornado.07200.0009004.cm1hdf5
...
tornado.07200.0009999.cm1hdf5

HDF5 internal structure
All 3D floating point data has been compressed with
ZFP in accuracy mode, with each variable given its
own accuracy parameter.

/
00000 (time index - 50 per file)
00001 These 50 times were buffered
... to memory before written to disk.
00049

2D
3D (each 3D array ZFP compressed)

dbz(nk,nj,ni)
pressure(nk,nj,ni)
temperature(nk,nj,ni)
u_wind(nk,nj,ni)
v_wind(nk,nj,ni)
w_wind(nk,nj,ni)
...

Activate ZFP in CM1/HDF5
module module_orfio
use hdf5
use h5zzfp_props_f...
ierr = H5Z_zfp_initialize()...
call h5pcreate_f(H5P_DATASET_CREATE_F,chunk_id,ierr)
call h5pset_chunk_f(chunk_id,rank,chunkdims,ierr)
ierr = h5pset_zfp_accuracy(chunk_id,accuracy)
call h5dcreate_f(f_id,trim(varname),H5T_NATIVE_REAL,

dspace_id, dset_id,ierr,dcpl_id=chunk_id)
call h5dwrite_f(...)...

LOFS middleware / tools
hdf2nc: Convert LOFS data to a single netCDF file
Usage: hdf2nc –histpath=[histpath] –ncbase=[ncbase]
–x0=[X0] –y0=[Y0] –x1=[X1] –y1=[Y1] –z0=[Z0] –z1=[Z1]
–time=[time] [varname1 ... varnameN]
makevisit: Create a file to be read by VisIt using
LOFS plugin code, which reads the LOFS file system
natively (serially, in parallel)
Usage: makevisit –histpath=[path] –base=[base]
–x0=[x0] –y0=[y0] –x1=[x1] –y1=[y1] –z0=[z0] –z1=[z1]

Rank reordering: 2x2 example
CM1 utilizes a 2D domain decomposition, where each
MPI rank spans a horizontal patch that contains the
full vertical extent of the domain. Each file contains
3D variables that span a continuous 3D volume of the
model domain. By reordering ranks, one file per node
can be saved that traverses the node only, with only
intranode communication required to grow the files
in memory.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32

33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48

49 50 51 52
53 54 55 56
57 58 59 60
61 62 63 64

20
24
28
32
52
56
60
64

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Before: Ranks are or-
dered in “SMP” mode
where each subsequent
node is populated with
ranks

After: Nodes/ranks are
mapped to the physi-
cal model domain. One
rank on each node col-
lects, assembles, com-
presses, and buffers to
memory.

Compressed vertical vorticity

Vertical vorticity isosurfaces
of +/−0.1 s−1 (uncom-
pressed)

Accuracy = 0.1 s−1 Accuracy = 1.0 s−1 Full domain compression ra-
tios of vertical vorticity for
each file (accuracy = 0.1 s−1)

Inset region in image to left

Compressed cloud mixing ratios

uncompressed

accuracy = 0.01 g/kg

accuracy = 0.1 g/kg

accuracy = 1 g/kg

accuracy = 5 g/kg

0.2 g/kg Isosurface of cloud water mixing ratio for differ-
ent accuracy choices. Domain-wide values range from 0 to
15 g/kg.

Domain-wide compression ratios per file for
accuracy = 0.01 g/kg. Box roughly indicates
region visible in image to the left.

Compressed simulated radar reflectivity

Compressed utilization (percent of uncompresed)

Uncompressed surface radar re-
flectivity across entire domain
(ranging from -40 to 60 dBZ)

Domain-wide compression ratios
per file of reflectivity (accuracy
= 1 dBZ)

Domain-wide compressed utiliza-
tion as a percentage of uncom-
pressed utilization for each file
(accuracy = 1 dBZ)

Results
• ZFP compression is successfully applied to

floating point data in HDF5 files created in mas-
sively parallel thunderstorm simulations

• Variables in each HDF5 file are continuous
chunks of the model subdomain, and by apply-
ing the same accuracy parameter to a given vari-
able in each file, compression ratios vary across
files, with the “least interesting” portions of the
domain compressing the best

• For visualization / plotting, you can get away
with an accuracy parameter that results in
domain-wide compression ratios ranging from
20:1 to 1000:1, depending on the variable

• Very small accuracy parameters result in com-
pression ratios significantly better than lossless
(with only a slight loss in accuracy)

• A practical result of the application of ZFP to
floating point data is the ability to save on the
order of 20 to 100 times more data for a given
simulation as compared to lossless compression

Acknowledgments
This work was supported by NSF grant OAC-1614973 and the
Space Science and Engineering Center at UW-Madison. This re-
search is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation
(award number ACI 1238993) and the state of Illinois. Blue Waters
is a joint effort of the University of Illinois at Urbana-Champaign
and its National Center for Supercomputing Applications.

References
Lindstrom, P., 2014: Fixed-Rate Compressed Floating-Point
Arrays. IEEE Trans. Vis. Comput. Graph., 20, 2674–2683.
Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017:
Evolution of a Long-Track Violent Tornado within a Simulated
Supercell. Bull. Am. Meteorol. Soc., 98, 45–68.
Visit http://orf.media for more


